RAPID COMMUNICATIONS

Resolution of phase ambiguities in electron-impact ionization amplitudes

PHYSICAL REVIEW A 68, 020701R) (2003

T. N. Rescignd* M. Baertschy?"" and C. W. McCurdy®*
ILawrence Berkeley National Laboratory, Computing Sciences, Berkeley, California 94720, USA
°Department of Physics, University of Colorado at Denver, Denver, Colorado 80217, USA
3Department of Applied Science, University of Califorrlzavis, Livermore, California 94551, USA
(Received 13 April 2003; published 25 August 2003

The formal theory of atomic ionization by electron impact relates the breakup amplitude to an integral
expression involving the exact wave function and an unperturbed final state that contains two Coulomb
functions with effective, noninteger charges. This integral expression has an associated phase factor that
diverges logarithmically on an infinite volume unless the effective charges are chosen to satisfy a kinematic
relationship, the so-called “Peterkop condition.” We derive the explicit form of the Peterkop phase for two
commonly used models of electron-hydrogen ionization, the Temkin-Poet model and the collinear model. We
show that the formal theory can be used to identify and remove this physically insignificant, volume-dependent
phase from amplitudes computed using numerically stable integral expressions that do not satisfy the Peterkop
condition.
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There are a variety of theoretical techniques capable dthe final state is represented as a product of Coulomb waves,
producing accurate total electron-impact ionization crossP(,:¢_k1(r1;21)¢_k2(r2;22), then this integral is related
sections, even at collision energies close to threshold. Thg) the breakup amplitudd(k, k), by
accurate prediction of differential ionization cross sections is
another matter entirely and to date only a few methods have ] )
produced stable differential ionization cross sections at low locf(ky ko) lim expli§(zy k152, ko) IN(2Kp)},  (2)
impact energies over the entire range of available energy e
sharing. The method of exterior complex scalifC9 is
one such method and relies on(@mplex scaling of the  wherep is the hyperradius defining the volume of integra-
radial electron coordinates outsidetfaypensphere of finite  tjon.
volume to obviate the need for explicit imposition of three-  The main point is that the integral in EL) is propor-
body asymptotic boundary conditions in computing the scattional to the breakup amplitude, but with a volume-
tering wave function[1]. Early implementations of the dependent overall “Peterkop phasaifilessthe chargesz,
method[2] relied on a direct evaluation of the quantum- and z,, associated with the two Coulomb functions satisfy
mechanical flux through a finite hypersurface, followed bythe dynamical “Peterkop condition”§(z;,kq;2,,k,)=0
numerical extrapolation to infinite volume to obtain physical (which we discuss in detail belowThe phase in question is
cross sections. We have since developed more efficient metn overall phase in the amplitude for a specific physical pro-
ods based on integral expressions for the scattering amplgess, and as such does not change any physical observable.
tude[3]. However, for numerical calculations carried out over a

The use of integral expressions for the ionization ampli-finite volume, we have shown that the use of effective
tude in numerical calculations raises some interesting formatharges other than 1 leads to serious numerical problems,
questions. In the formal theory developed some 40 years aggecause only Coulomb functions witk 1 are orthogonal to
Peterkop 4] and Rudge and Seat¢] considered the ques- the bound states of the target at¢i. On a finite volume,
tion of how to define the breakup amplitude in terms of anthere are of course no problems with divergent phase factors,
integral of the form but one might naturally be led to question whether ampli-
tudes calculated with Coulomb functions that do not satisfy
the Peterkop condition give physically correct cross sections.
We have addressed this point in several earlier pa&r
and shown it to be inconsequentii8]. Nevertheless, the
whereW is a reference function corresponding to the finalissue of calculating the correct phase has recently been raised
state with two electrons in the continuum, whose form the[8], prompting us to examine this subject in more detail.
formal theory seeks to define, afd is the full solution of We show below that the logarithmic component of the
the Schrdinger equation satisfying the correct boundaryphase in Eq(2) is entirely predictable and can be removed
conditions for ionization. These authors pointed out that iffrom the computed amplitude, so long as the volume of the

integration in Eq(1) is well defined. We emphasize that it is
not necessary to remove this phase in any practical calcula-

|:J’q’(rlarz)(H_E)q’o(rlvrz)drldrz, (1
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To illustrate our discussion, we use two popular two-It immediately follows that the asymptotic form of the wave
dimensional models of electron-hydrogen ionization: thefunction can be written as
Temkin-Poet, oS-wave, model and the collinear model. The
first step is to establish the asymptotic form of the scattering
wave function with two electrons in the continuum. The ra-
dial Schralinger equation for a two-electron problem with

(92

1 ©
W(ry,rp)=— \/_;J’o dP'G(P,p')m E‘P(P'ﬂ)

no angular momentum is ~ Ala) ex;{i Kp+€(a) In(2Kp)”
L7 17 +V( )| V=EW¥ (3) G “ |
———z— ri,r =EV,

2 pr2 2 pr3 12 (12)
where E=K?/2 is the total energy anil(ry,r5) is the full ~ with the ionization amplitudé\(«) identified as
interaction potential, 1 | 1 e

L1 A(a)—Kexp<| Z+argl" §_|T> }
V(rq,ro)=————+V,. 4
( 1 2) r ry 2 ( ) " 1 (?2
_ o _ xf dpF(£K,p) = ——P(pia).  (13)
andV, is the (mode) two-body interaction. In hyperspheri- 0 2p° da

cal coordinates{p=\/r21+r22, tan(a)=r,/rq], Eq. (3) be-
comes, with¥ =®/p*?,

©)

where the interaction potential has been rewritten as

{(a)

V(rl,fz)Z—T- (6)

Following Rudge’s approach9] for the full ionization
problem, we rearrange the ScHioger equation as

1 &

2p?% da’

K2

2
5 19 i+@@:

=—++ o, (7
2 9p®  8p? p @

and formally solve this using the Coulomb Green'’s function
with « as a parameter on the left-hand side. The Green’

function G(p,p’) is expressed in terms of regular and out-
going functionsF andH with asymptotic forms

F({,K,p)~sinf(p)], p—eo,
H( K,p)~exdif(p)], p—e (8
and
¢ T 1 ¢
f(p)=Kp+ RIn(ZKp)+Z+argF E—IR) 9
as
2
G(PaP’):_RF(51K1P<)H(§1K1P>)1 (10)
and satisfies the equation
K2 1 52+ 1 +§(a)G "= 80— p)
2 25,2 82 p (p.p )=6(p—p").
1

A knowledge of the asymptotic form of the wave function
is all that is required to develop integral expressions for the
scattering amplitude. We again follow the course outlined by
Peterkop4] and by Rudge and Seatdh] and consider the
integral in Eq.(1) for two radial variables. To evaluate the
integrall in this case we again switch to hyperspherical co-
ordinates and use Green’s theorem to express it as a surface

integral:
/2
[
0

We now chooséb , to be the product of two radial Coulomb
functions with effective charges, andz, and moment&k;,
andk, defined as

- ov
Gp

1 lim
~5po

av,

ap

= pda. (14

k,=K cogp), (15
k,=K sin(B).
?Nith these definitions, we have
Wo(ri,r2) =y, (r1;21) di(r2:22), (16)
¢k(r;z)~sin(kr+EIn(Zkr)Jrok(z)), r—oo,
where
o(z)y=argl'| 1—i E) a7

After substituting the asymptotic forms given in Ed42)
and(16) into Eq. (14), we can express the integral as

i iKp a2 H
|:l lim €7 daA( a)eilke {(@)/KIn(@Kp)] 1{(a)
2p—* \/; 0 kp ap
: z;
“3, sin| kyp cosa + k_lln(2klp cosa) + oy (21)
. 2
X| sin| kop cosa+ k—zln(2k2p COSa)+0‘k2(22) . (18
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The integration can be carried out using the method of sta- 25 ' T ' T '
tionary phasd10], which is exact in the limitp—c. The

algebra is tedious, but straightforward, and will not be repro-
duced here. The key identity needed in the derivation is the

stationary phase result: WI/\“‘.“‘

fﬁlzf(a)sil’[klp cog a)+g(a)]sinksp sin(a)+h(a)]
0

~ 1 2w
p_)oo_zf(ao) Vi,c° Kp+g(ao)

—
3

----- =250, uncorrected
--- =300, uncorrected
— =250, corrected

phase (radians)
|
|

05 —
L « =300, corrected T
T RN Il

+ h(aO) - Z ’ (19) o \‘\\\ ,,/’/ -
where the stationary poink, is given by the condition | ;\::::.;::’/./ .
tanay=k,/k; or, in view of Eq.(15), ag=p. It is then 03 05 1 s
possible, by performing the integral overin Eq. (18) be-
fore differentiating with respect tp, to derive the desired 3 ' T T '
result

— 1 . )
| limp—so0 Z\/ZWK|A(B)9XF{ =1 ( Q(ky,21) +Q(kz,2y)
3 (LB 7 2z 223
+—|expi| —————+]In(2Kp) |+ O(1lp), (20 g £250, uncorrected
4 K k 1 k 2 "g =300, uncorrected
R 2250, corrected
with % =300, corrected
=
Z (=%
Q(k;z)=ak(z)+2EIn(k/K). (22 pY S
The integral defined by Ed1) is thus proportional to the
physical breakup amplitude times a logarithmic phase factor,
which diverges in the limitp—o, unless the effective
charges are chosen to satisfy the condifiéh 155 ' O'._.-, ! A L ) ' Ts
z z excess energy (hartrees
{p)_n 2 . | -
K ki ko FIG. 1. Phase of the computed amplitude for the singly differ-

. . . ential cross section for breakup at a total energy of 1.5 hartrees for
On any finite volume, the “Peterkop phasef=({(B8)/K ifferent 2D models of-H ionization. Upper panel, Temkin-Poet

—21/k1—251k3)In(2Kp), is well defined. model; lower panel, collinear model. The curves labeled uncor-
We now turn to the two models previously mentioned. INrected were computed using Ed4) at a fixed value of the hyper-
the Temkin-Poet model, the full interaction potential is re-radius. The corrected curves are obtained by removing the appro-
placed by its spherical averag&(r,,r,)=—1/r;—1l,  priate volume dependent portions of the phase for each model, as

+ 1/~ =—1/r - which, according to Eqs6) and (20), de-  discussed in the text.
fines the Peterkop phase as
orthogonality between the Coulomb distorted waves and the
(1 ha L In(2K p) 23) bound hydrogenic states and therefore remove any spurious
4 k ki ks (2Kp). contributions to the breakup amplitude that arise from dis-
crete two-body excitation channels. This leads naturally to
Not surprisingly, the choice;=0 and z,=1 makes the the choicez;=z,=1, as explained at length in Refd] and
phase vanish for ak,;=k,. In the Temkin-Poet model, the [6]. The choicez;=z,=1 gives a Peterkop phase of
separable nature of the potential leads to a complete screen-1/k- In(2Kp).
ing of the fast electron by the slow electron, so that the The collinear model use¥(r,r,)=—1/r;— 1/r,+1/(r,
product of a free function and a Coulomb function is the +r,). In that case, the Peterkop phase is
“correct” final state in this case, and provides the proper

boundary condition for an exact numerical treatmgtit]. 1{(1-z) (1-2y)
This fact is peculiar to the Temkin-Poet case, however, and?col= ¢ codB)  sinB) [codB)+sinB)] In(2Kp).
does not extend to other two-dimensioit2D) models, nor (24)

to the full problem. In our previous work on calulating ion-
ization amplitudes, we showed that it is essential to maintairfror this case, there is n8-independent choice of effective
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charges that can lead to a vanishing phase. The ECS choidepends on the speed and direction of ejection of both elec-
z,=2,=1 gives a phase of 1/(k;+k5)In(2Kp). trons and can, in principle, be removed, but not so easily as
We now turn to some numerical demonstrations. We carin the models considered here. Most approaches, including
ried out ECS calculations of-H ionization for the singlet ECS, use a partial-wave decomposition of the full wave
spin case at a total energy of 1.5 hartree for both the Temkinfunction and the various numerically computedcompo-
Poet and collinear models. The scattered wave functiongients are combined coherently to produce the total ionization
were generated on a two-dimensional square grid the reglmpjitude. This construction effectively includes the Pe-
portion of which extended to 300 Bohrip andr,. We used  terkop phase if the various pieces are all computed with the
the f|r_1|te—element/d|screte vanable._re.presentatlor) previousl¥ame hyperradius. This is an essential point, since an incon-
described[12] to solve the 2D Schutinger equation. The = gjstent choice of hyperradii would produce phase inconsis-
ionization amplitude was computed at a fixed value of th&encies between the various partial-wave components of the
hyperradius, using Eq14), and two Coulomb functions with - amplitude and, consequently, incorrect doubly or triply dif-
z=1 in the final state. The surface integrals were evaluategxrential cross sections. When the Peterkop phase is correctly
at hyperradii of 250 and 300 bohrs. The resulting phases, agnstructed, it factors out of the total amplitude and makes
a function of ejected electron energy, are shown in Fig. 14 contribution to any observable cross secfi8h
For the Temkin-Poet case, shown in the upper panel of Fig. \\e have also shown that the choize=0, z,=1, which
1, the phase of the computed amplitude is seen to depend 6§ ysed in most basis-set close-coupling approaches, only
hyperradius. By adding BLIn(2Kp) to the computed phase, gjiminates the Peterkop phase in the special case of the
we produce a result that is independenpab the numerical  Temkin-Poet model. For the full problem, this would not be
accuracy of the calculations. By further addiQgk-,1) we  the case. Moreover, since there is really no well-defined hy-
produce the phase that is plotted, which should correspond tgersphere in such approaches, apart from the “volume” de-
the phase one would obtain in an exact numerical int_egrationned by the range of the basis sets employed, it would seem
of the Temkin-Poet modglL1]. The results for the collinear that the task of maintaining phase consistency between the
case are shown in the lower panel of Fig. 1. In this caseyarious partial-wave amplitudes is not as straightforward. In-
addition of 1/, +k3)In(2Kp) to the computed phase again deed, recently published work on triply differential ioniza-
produces g-independent result. tion cross sections foe-H using the convergent close-
So what have we learned from this exercise? We haveoupling method13] has stressed the importance of using a
shown that for any 2D model of electron impact ionization,sing|e basis-set Sca“ng parame(erbita| exponer)tfor all
the breakup amplitude, computed from a numerically generpartial waves to avoid apparent convergence to an incorrect
ated wave function on a finite hypersphere, will have a phasgesult. Since this parameter controls the range of the basis,
component, which we have called the “Peterkop phase,” thafye can only speculate that this finding reflects the necessity
depends logarithmically on the hyperradius. For any 2Dof maintaining a consistent phase convention between the
model, this phase, which can depend only on the hyperanglgarious partial-wave components of the amplitude.
B, can easily be predicted, calculated and, if desired, re- Thjs work was performed under the auspices of the U.S.
moved from the total phase. For the full six-dimensionalpepartment of Energy by the University of California

problem, the Peterkop phase, which is given by Lawrence Berkeley National Laboratory under contract No.
1 1 1 DE-AC03-76F00098. The work was supported by the US
R R S DOE Office of Basic Energy Science, Division of Chemical
+ In(2Kp), (25) :
ki ko [ki—ka|l ki kp Sciences.
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